Risk Factors and Chemoprevention of Colon Cancer in IBD

Steven H. Itzkowitz, MD, FACP, FACG, AGAF

Professor of Medicine and Oncological Sciences
Icahn School of Medicine at Mount Sinai
New York City, N.Y.
Financial Disclosures

Exact Sciences Corp.

- research support
- Scientific Advisory Board
The Incidence of CRC in UC is Declining

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>10 yrs</th>
<th>20 yrs</th>
<th>30 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaden ‘01</td>
<td>Meta-anal.</td>
<td>1.6%</td>
<td>8.3%</td>
<td>18.4%</td>
</tr>
<tr>
<td>Winther ‘04</td>
<td>Denmark</td>
<td>0.4%</td>
<td>1.1%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Rutter ‘06</td>
<td>St. Mark’s</td>
<td>0%</td>
<td>2.5%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Lakatos ‘06</td>
<td>Hungary</td>
<td>0.6%</td>
<td>5.4%</td>
<td>7.5%</td>
</tr>
</tbody>
</table>

Nonetheless, IBD patients are still considered to be at high risk for CRC.
CRC Risk in UC: Declining over the Decades

<table>
<thead>
<tr>
<th>Decade</th>
<th>No of Studies</th>
<th>Patient-Years</th>
<th>No of CRC cases</th>
<th>Incidence rate per 1000 py</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>3</td>
<td>4,750</td>
<td>22</td>
<td>4.29 (0.95-7.64)</td>
</tr>
<tr>
<td>1960’s</td>
<td>7</td>
<td>19,304</td>
<td>80</td>
<td>4.18 (2.67-5.68)</td>
</tr>
<tr>
<td>1970’s</td>
<td>4</td>
<td>12,909</td>
<td>40</td>
<td>3.22 (0.67-5.77)</td>
</tr>
<tr>
<td>1980’s</td>
<td>14</td>
<td>123,866</td>
<td>310</td>
<td>2.58 (1.81-3.34)</td>
</tr>
<tr>
<td>1990’s</td>
<td>12</td>
<td>87,499</td>
<td>132</td>
<td>1.53 (1.06-2)</td>
</tr>
<tr>
<td>2000’s</td>
<td>23</td>
<td>369,829</td>
<td>525</td>
<td>1.29 (1-1.58)</td>
</tr>
<tr>
<td>2010-2013</td>
<td>18</td>
<td>861,478</td>
<td>1,180</td>
<td>1.21 (0.95-1.48)</td>
</tr>
</tbody>
</table>

Risk of CRC in IBD: Factors that \textit{Increase} Risk

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration >8-10 years</td>
<td>2.4-2.8</td>
</tr>
<tr>
<td>Extent of colitis:</td>
<td></td>
</tr>
<tr>
<td>• pancolitis</td>
<td>14.8</td>
</tr>
<tr>
<td>• left-sided</td>
<td>2.8</td>
</tr>
<tr>
<td>• proctitis</td>
<td>1.7</td>
</tr>
<tr>
<td>Primary sclerosing cholangitis</td>
<td>4.8</td>
</tr>
<tr>
<td>Family history of colon cancer:</td>
<td></td>
</tr>
<tr>
<td>• Age >50</td>
<td>2.5</td>
</tr>
<tr>
<td>• Age <50</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Farraye, Odze, Eaden, Itzkowitz. AGA Technical Review on the diagnosis and management of colorectal neoplasia in IBD. \textit{Gastroenterology} 138:746-74, 2010
Risk of CRC in IBD: Factors that *Increase* Risk

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active inflammation</td>
<td></td>
</tr>
<tr>
<td>• Histologic</td>
<td>3.0-5.1</td>
</tr>
<tr>
<td>• Colonoscopic</td>
<td>2.5</td>
</tr>
<tr>
<td>Anatomical abnormalities</td>
<td></td>
</tr>
<tr>
<td>• Foreshortened colon</td>
<td>28.4</td>
</tr>
<tr>
<td>• Stricture (UC)</td>
<td>5.7</td>
</tr>
<tr>
<td>• Pseudopolyps</td>
<td>2.1-2.5</td>
</tr>
<tr>
<td>History of dysplasia</td>
<td>9</td>
</tr>
</tbody>
</table>

Farraye, Odze, Eaden, Itzkowitz. AGA Technical Review on the diagnosis and management of colorectal neoplasia in IBD. *Gastroenterology* 138:746-74, 2010
Risk of CRC in IBD: Factors that *Decrease* Risk

- Surveillance colonoscopy
- Regular doctor visits (some studies)
- Chemoprevention
 - 5-ASA: Probably not
 - Immunomodulators: Probably
 - Ursodiol: Yes (in PSC patients)
 - Anti-TNFs: Insufficient data
 - Steroids: Maybe
 - Folate: Maybe
Evidence To Support Surveillance Colonoscopy in IBD

- No randomized studies
- No cohort studies (except chromoendoscopy)
- Circumstantial evidence
 - Case-Control studies
 - Decision Analysis Studies
 - Faulty comparisons of surveillance-detected vs. symptomatic cancers

Farraye, Odze, Eaden, Itzkowitz. AGA Technical Review on the diagnosis and management of colorectal neoplasia in IBD. Gastroenterology 138:746-74, 2010
AGA: Recommended Surveillance Practice 2010

- Begin at 8 years of colitis (all patients except proctitis)
 - for PSC: at time of PSC diagnosis
- Repeat colonoscopy every 1-2 years.
 - Consider shorter interval if: active inflammation,
 (+) family hx of CRC, PSC, stricture, pseudopolyps
- Representative bx’ es from each colonic segment
 - chromoendoscopy if have expertise
- Attention to polyps/raised lesions
 - Biopsy flat mucosa adjacent to polypectomy sites
- Do for Crohn’s colitis what you would do for UC

Farraye, Odze, Eaden, Itzkowitz. AGA Technical Review on the diagnosis and management of colorectal neoplasia in IBD. Gastroenterology 138:746-74, 2010
BSG 2010 IBD Surveillance Guidelines

Screening Colonoscopy at 10 Years (preferably in remission; pancelonic dye spray)

Lower Risk
- Extensive UC; inactive histo/endo inflamm.
- Left-sided colitis
- Crohn’s colitis < 50% colon

Intermediate Risk
- Extensive UC; mildly active histo/endo inflamm.
- Post-inflammatory polyps
- FH CRC age >50

Higher Risk
- Extensive UC; mod-severe histo/endo inflamm.
- Stricture in past 5 yrs
- Dysplasia in past 5 yrs declining surgery
- PSC
- FH CRC age <50

Cairns et al. Gut 59:666-690, 2010
British Society of Gastroenterology: 2010 IBD Surveillance Guidelines

• Biopsy Protocol
 – Pancolonic dye spray with targeted biopsy of abnormal areas (Grade A recommendation)
 – Otherwise, 2-4 random biopsies from every 10 cm.

• Other considerations
 – Patient preference
 – Multiple post-inflammatory polyps
 – Age
 – Co-morbidity
 – Accuracy and completeness of examination

Cairns et al. Gut 59:666-690, 2010
Problems with BSG Guidelines

• Starting at 10 yrs will miss some cancers.
 – 17% of CRC diagnosed before 10 yrs of disease (Lutgens et al. Gut, 2008)

• Interval cancers often occur approx. 2 yrs after the last colonoscopy

• Assumes that quiescent disease is low risk.

• Limited evidence to support changing the surveillance interval based on:
 – family history: only one study stratified risk based on age of FDR with CRC
 – endoscopic appearance of the colon
Chemoprevention in IBD: Mechanisms

• Medicines reduce inflammation, thereby lowering carcinogenesis
• Medicines have direct anti-tumor effect
• Mucosal healing allows better detection of dysplastic lesions by colonoscopy.
• Agents that have been most studied:
 – 5-ASA
 – Thiopurines
 – Ursodeoxycholic acid
 – Anti-TNFs
Chemoprevention in IBD: 5-ASA

• Mechanisms:
 – Promote healing (anti-inflammatory)
 – Anti-tumor effects:
 » Promote cell cycle arrest; improve DNA replication fidelity; inhibit COX-2; scavenge oxygen radicals; induce PPAR-gamma.

• Results:
 – Pooled adjusted OR: 0.95 (0.66-1.38)
 – Clinic-based studies OR: 0.58 (0.45-0.75)

Chemoprevention in IBD: Thiopurines

- **Mechanisms:**
 - Promote healing (anti-inflammatory)

- **Results: (meta-analysis)**
 - Overall: OR: 0.71 (0.54-0.94)
 - Case control studies: OR: 0.46 (0.29-0.74)
 - Cohort studies OR: 0.96 (0.94-0.98)

Gong et al. PLOS-One 8:e81487, 2014
Thiopurines to Prevent CRC: Meta-analysis

Overall: 0.71 (0.54, 0.94)
Case-Control: 0.46 (0.29, 0.74)
Cohort: 0.96 (0.94, 0.98)

Gong et al. PLOS-One 8:e81487, 2014
Chemoprevention in IBD: Anti-TNFs

• Mechanisms:
 – Promote healing (anti-inflammatory)
 – Anti-tumor effect (?)

• Results: (conflicting)
 – Dutch case-control: OR 0.09 (0.01-0.68)
 – Danish pop’n base: RR 1.06 (0.33-3.40)

SUMMARY

1. Patients with both longstanding UC and Crohn’s colitis have an increased risk of CRC.
2. Although the risk of dysplasia/CRC in IBD may be decreasing, IBD is still a high risk condition.
3. Preventing dysplasia/CRC with medications is controversial:
 • Thiopurines: probably preventive
 • 5-ASA: probably not
 • Ursodeoxycholic acid: probably (in PSC only)
 • Anti-TNF: insufficient data
4. Therefore, careful surveillance colonoscopy is important